考夫曼、霍兰德和其他人发明的这套数学还没有合适的名字,我在这儿叫它“网络数学”。其中的一些方法有各式各样的非正式名称:并行分布式处理、布尔网络、神经网络、自旋玻璃、细胞自动机、分类系统、遗传算法、群计算,等等。不管是哪一种网络数学,由数千个相互作用的函数所形成的横向因果关系都是其共同要素。它们都试图协调大量同时发生的事件——那种在真实世界中无处不在的非线性事件。网络数学与古典牛顿数学是相对的。牛顿数学适用于大多数物理问题,因而曾被看作是严谨的科学家所需要的唯一数学。而网络数学离了计算机则一无用处。
群系统和网络数学的广泛多样性让考夫曼很想知道这种奇特的群体逻辑——他确信它会产生必然的秩序——是不是一种更普遍而非特殊的逻辑。譬如说,研究磁性材料的物理学家遇到了一个棘手问题:构成普通铁磁体——那种可以吸在冰箱门上或用在指南针中的磁铁——的微粒会着了魔似的指向同一个方向,从而形成显著的磁场。而弱磁性的“自旋玻璃”其内部微粒更像是“墙头草”,其指向会受到附近微粒的影响。临近的微粒影响力大,相隔较远的微粒影响力小。这个网络中相互影响、头尾相衔的一个个磁场,构成了考夫曼头脑中那幅熟悉的画面。自旋玻璃的这种非线性行为可以用各种网络数学方法来建模,后来在其他的群体模式中也发现了这种非线性行为。考夫曼确信,基因的环路在架构上与此类似。
网络数学不像古典数学,它所具有的特性往往不符合人们的直觉。一般来讲,在相互作用的群集中,输入的微小变化可以引起输出的巨大变化。这就是蝴蝶效应——效果与起因并不成比例。
Loading...
未加载完,尝试【刷新】or【退出阅读模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.dd123.cc
(>人<;)