电脑版
首页

搜索 繁体

第二章 数学结构和逻辑结构 5.群的概念

热门小说推荐

最近更新小说

如果不从检验数学结构开始,就不可能对结构主义进行批判性的陈述。其所以如此,不仅因为有逻辑上的理由,而且还同思想史本身的演变有关。固然,产生结构主义的初期,在语言学和心理学里起过作用的那种种创造性影响,并不具有数学的性质(索绪尔学说中关于共时性平衡的理论是从经济学上得到启发的;“格式塔”学派的完形论学说则是从物理学上得到启发的),可是当今社会和文化人类学大师列维-斯特劳斯(Levi-Strauss),却是直接从普通代数学里引出他的结构模式来的。

另方面,如果我们接受在第一章里所提出的结构主义定义,那末最早被认识和研究了的结构,是由伽洛瓦(Galois)所发现的“群”的结构,这似乎是无可置疑的。并且这个“群”的结构在十九世纪逐步征服了数学这门科学。一个群,就是由一种组合运算(例如加法)汇合而成的一个若干成分(例如正负整数)的集合,这个组合运算应用在这个集合的某些成分上去,又会得出属于这个集合的一个成分来。还存在一个中性成分(在我们选用的这个例子里,是零),这个中性成分和另外一个成分结合,并不使这另一个成分发生改变(这儿是n+0=0+n=n;尤其是这里还存在一个逆向运算(在我们这个特定情况里,是减法),正向运算和逆向运算组合在一起,就得出那个中性成分来(+n-n=-n+n=0;最后,这些组合都是符合结合律性质的组合(这儿是[n+m]+l=n+[m+l])。

群结构作为代数基础,已经显示出具有非常普遍和非常丰富的内容。几乎在所有的数学领域里,并且在逻辑学里,我们都又发现了群结构。在物理学里,群结构具有基本的重要性;在生物学里,也可能会有一天情况相同。所以,力求明了这种成功的由来是很重要的了。因为群可能被看做是各种“结构”的原型,而且,在某些人们所提出的东西必须加以论证的领域里,当它具备了一些精确的形式时,群能提供最坚实的理由,使人们对其结构主义的未来,抱有希望。

Loading...

未加载完,尝试【刷新】or【退出阅读模式】or【关闭广告屏蔽】。

尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!

移动流量偶尔打不开,可以切换电信、联通、Wifi。

收藏网址:www.dd123.cc

(>人<;)