在40年代和50年代期间,许多在数学上思维敏捷的人曾经热情地工作,研制出第一部电子计算机。当然,他们成功了,而且在过去30年内,数学家们在电子方面的脑力成果已使许多科学领域发生了巨大的变革,然而,可笑的是,数学本身却没有进展。美国斯坦福大学的数学家约瑟夫·凯勒说道:“看看我们这个系,我们拥有的计算机比学校其他系,包括法国文学系在内,都要少。”
“这是很可笑的事,”罗伯特·奥泽曼这样说,他是凯勒的同事,已在斯坦福大学工作了30年。“我们缺乏计算机显然是有几种原因,一是由于一些数学家的保守性——他们不愿意花时间去真正学习如何有效使用计算机——另外,他们认为使用计算机要花很多时间,这正是他们自己不愿努力思考的托词。”
然而这些日子,由于前斯坦福大学学生、现在美国阿默斯特市马萨诸塞州立大学工作的戴维·霍夫曼有了一项引人注意的新发现,使凯勒和霍夫曼对计算机在数学中应用的未来更有信心了,借助于改革了的计算机绘图系统,霍夫曼及其同行、美国赖斯大学几何学家威廉·米克斯第三发现了无穷无尽的优美曲面,这些曲面遵循某些严格的标准。而目前已知的只有3种曲面符合这些标准。这些奇异的曲面已使麦比乌斯带似乎显得世俗而又平凡。无疑,他们填补了数学上的一项空白,而且还证明了这些曲面像麦比乌斯带一样可以用于数学之外的一些学科,诸如胚胎学与牙科学等多种学科。
计算机对基础数学做出的最著名的贡献是一项“10岁”的成果,它打乱了老规律。1976年,美国伊利诺斯大学肯尼思·阿佩尔和沃尔夫冈·哈肯证明了著名的四色地图定理,该定理阐明了用这种方法至多只需4种颜色,就能把许多想象到的国家绘制在一张彩色平面地图内,而其中的任何两个邻国颜色不同。
Loading...
未加载完,尝试【刷新】or【退出阅读模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.dd123.cc
(>人<;)