<!--go-->
今天没码完,所以晚一会儿更新,大概凌晨一两点吧,主要是这一章确实有点费劲了,写了两三个小时了,但却还是差了一大截,等更新之后只要重新刷新这一章就行了。
摘要:为了减少多元异构网络数据安全传输时延,设计一个基于机器学习的多元异构网络数据安全传输技术。通过选择数据源与数据属性的重要性定义,对多元异构网络数据预处理,并建立多径并行传输架构,在此基础上,采用机器学习方法进行有效带宽估计与参数滤波处理,最后进行带宽调度与信道安全协议体系建立,从而完成基于机器学习的多元异构网络数据安全传输。实验结果表明,此次研究的基于机器学习的多元异构网络数据安全传输有效减少了数据传输时延,并减少了数据传输中断情况与数据丢包率,满足数据传输技术的设计需求。
关键词:机器学习;多元异构网络;数据安全传输;网络数据预处理;并行传输构架
2k
1引言
当前,通信技术发展迅速,多种网络特点明显,并经过多年的改革创新,使无线接入技术的传输速率逐渐逼近极限。在这种背景下,为满足多种业务需求,需要进行多网写作。但是,传统的写作机制在网络传输资源使用上,不能同时、高效的使用,不能有效保证高效传输业务,并且会增加传输中的能耗问题,从而导致传输过程中发生干扰问题。因此,很多学者开展了关于多元网络数据传输方法的研究。文献[1]中,石玲玲,李敬兆研究了异构网络中安全数据传输机制,该机制主要采用一种基于优化的AES-GCM认证加密算法和基于SHA的数字签名算法相结合的安全数据传输机制进行数据的传输;文献[2]中,周静,陈琛研究了基于异构网的一种数据安全模型,该模型预先对数据加密处理,然后建立安全传输信道进行了数据的传输。上述两种方法能够获得一定的效果,但是还存在一定的不足。针对上述的不足,为此本文将机器学习方法应用到多元异构网络数据安全传输中,以解决目前存在的问题。实验结果表明,此次研究的多元异构网络数据安全传输技术有效解决了目前存在的问题,具备一定的实际应用意义。
Loading...
未加载完,尝试【刷新】or【关闭小说模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.dd123.cc
(>人<;)