<!--go-->
“数形结合的应用大致可分为两种情形——”一名被点到的学生回答道,“一为借助于数的精确性来阐明形的某些属性;一为借助形的几何直观性来阐明数之间某种关系。即‘以数解形’或‘以形助数’。”
“很标准的答案——”藤原佑看着回答者,眉梢微挑,“如果不是你刚说自己是法学系的,我会以为你也是数学系的学生。”
“咳,”男生不好意思地垂下眼,“辅修了一点有关科目。”
是‘一点’,还是‘亿点’?
藤原佑暗自好笑,转头看了一眼内海浩二,给了个‘开始’的示意动作。
“接下去,我们就借助图形的帮助,来认识一下欧拉公式。”
一直停留在首页课程标题上的课件总算变动了一下,‘欧拉公式’四个字跳了出来。
“栗山同学——”藤原佑回到讲台上,看了眼之前被暂缓回答问题的学生,“简单介绍一下欧拉公式的四种形式。”
“是!”栗山正一从座位上站了起来,朗声道:“欧拉公式有四种形式,分别是复变函数中的欧拉公式、拓扑学中的欧拉公式、数论中的欧拉公式以及其他形式的欧拉公式。”
“在复变函数中,欧拉公式表示为:e(ix)=cos(x)+i×sin(x)——”
见藤原佑走到黑板前拿起粉笔,栗山正一的声音一滞,在前者疑惑回头后才压下想要上前帮忙的心思,继续道:
“其中,e表示自然对数的底数,i表示虚数单位,x表示一个实数,而cos和sin分别是x的余弦和正弦函数。”
“将x取π,可以得到e(iπ)+1=0——这个恒等式也叫欧拉公式,因为公式将五个最基本的数学常数(0、1、e、i和π)结合在一起,也被认为是数学中最美丽的公式之一。”
Loading...
未加载完,尝试【刷新】or【退出阅读模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.dd123.cc
(>人<;)